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Abstract
The correlations between topological and metric properties of fractal
tessellations are analysed. To this end, Sierpinski cellular structures are
constructed for different geometries related to Sierpinski gaskets and to the
Apollonian packing of discs. For these geometries, the properties of the
distribution of the cells’ areas and topologies can be derived analytically. In
all cases, an algebraic increase of the cell’s average area with its number of
neighbours is obtained. This property, unknown from natural cellular structures,
confirms previous observations in numerical studies of Voronoi tessellations
generated by fractal point sets. In addition, a simple rigorous scaling resp.
multiscaling properties relating the shapes and the sizes of the cells are found.

PACS numbers: 8717A, 0240S, 6143H

1. Introduction

During the past two decades, the geometric characterization of two-dimensional cellular
structures has attracted increasing interest among physicists [1]. Cellular structures can
be considered as subdivisions of the plane by polygonal cells with varying numbers of
sides (topologies). Three cell boundaries always join at the vertices fixing the mean cell’s
topology to six. The investigation of various natural planar tessellations reveals surprising
structural similarities among the different systems. These similarities are manifested in
different empirical laws for the distributions of the cells’ topologies and areas and their
correlations [2–5].

Recent experimental and theoretical studies show how these laws are modified in binary
cellular structures composed of two kinds of cells with different mean areas [6,7] and in fractal
tessellations with scale invariance [8, 9]. These findings suggest the importance of a unique
typical length scale for the structural similarities among most natural planar tessellations.
However, up to now only a few of the ‘exceptions from the rule’ have been investigated in
detail. In particular, there are no rigorous results concerning the interplay between metric and
topological properties of binary and fractal tessellations.

Only recently, the correlations between the cell’s areas and topologies in fractal cellular
structures have been studied numerically [9]. This analysis focused on Voronoi tessellations
of scale-invariant particle distributions generated by an almost critical directed-percolation
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Figure 1. Construction of the Sierpinski cellular structure: the first three iterations.

process in 2 + 1 dimensions. Measuring the relative frequency P(k,A) of k-sided cells with
area A, it was observed that curves for different A collapse if they are rescaled appropriately.
Therefore, in the scaling regime the scaling relation

P(k,A) ∼ A−γ1�(kA−γ2) (1)

was proposed. Relation (1) leads to an unusual algebraic increase of the mean cell’s area with
its topology:

〈A〉k ∼ k1/γ2 . (2)

In directed percolation, one has γ2 = 0.13(3), and thus a much faster increase in k than
predicted by Lewis’s law (γ2 = 1) [2]. In [9], the scaling relation (1) has been verified
numerically by data collapse. However, each decade of the scaling regime of k requires about
five decades of scaling range in A, which is a strong limitation for a numerical verification of
relations (1) and (2).

We now address the question whether the relations (1) and (2) can be regarded as a general
property of fractal cellular structures. For this purpose, the correlations between topological
and metric properties of iteratively constructed fractal tessellations are studied. We focus on
Sierpinski cellular structures first constructed in [8], for which the relation between size and
shape of the cells has not yet been investigated.

2. Sierpinski gaskets: topology

Natural two-dimensional cellular structures, and those generated by the Voronoi or Laguerre
construction, have in common that three edges meet at each vertex [1]. The Sierpinski cellular
structures are generated by successive replacements of these trivalent vertices by triangles [8].
In the resulting mosaics, each vertex is replaced by a Sierpinski cellular structure.

In one iteration step, at each vertex a triangle is inserted. The iterations are repeated
successively. The first three iterations are represented in figure 1. In the mth step, at each
vertex 3m−1 new cells are inserted. AfterM iterations, all cells belonging to a certain generation
m = 1, . . . ,M have the same topology

k = 3 · 2M−m. (3)
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Figure 2. Cell shape distribution pk for Sierpinski cellular structures.

The topological properties of Sierpinski cellular structures are known [8], in particular
the cell shape distribution pk , defined as the probability for an arbitrarily chosen inserted cell
having k sides. Simple calculations yield

pk = χ(k)
2

3

(
k

3

)− ln 3
ln 2

(4)

where the allowed edge numbers k are selected by the characteristic function χ(k) =∑M
m=1 δk,3·2M−m . The cell shape distribution (4) is represented in figure 2. It shows an unusual

algebraic decrease.
So far, only the graph of Sierpinski cellular structures has been defined. In order to analyse

the interplay between the areas and shapes of the cells in these structures, an appropriate area
has to be assigned to each cell. In the following, the metric properties for three typical choices
will be analysed.

3. Sierpinski gaskets: metric properties

3.1. Simply scaled cell areas

The first, simplest case is based on the usual construction of the Sierpinski gasket with total
area A�, defined as the area of the first inserted triangle (cf figure 1). We now assume that
each inserted triangle covers the portion α of one cell of the preceding generation. After M
iterations, all cells which belong to a certain generation m = 1, . . . ,M have the same area

A(m) = (1 − 3α(1 − δm,M))α
m−1A�. (5)

Equations (3) and (5) yield a unique relationship between the area of one cell and its topology
k:

Ak = A6

(
k

6

)− ln α
ln 2

k = 6, 12, . . . (6)
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where A6 = (1 − 3α)αM−2A�. Only the triangles, for which m = M , form an exception
with A3 = αM−1A�. The algebraic variation of Ak in expression (6) results of the exponential
decrease in m of both the cells’ numbers of edges (3) and their areas (5). Since 0 � α � 1/4,
the exponent in equation (6) is always larger than 2, and has no upper limit for infinitesimally
small values ofα: − ln α/ ln 2 ∈ (2,∞). Consequently, equation (6) agrees with the numerical
results in [9], suggesting a fast algebraic increase of 〈A〉k in fractal tessellations.

The scaling relation (1) can also be easily tested for this simple geometry. The relative
frequency P(k,A) of k-sided cells with area A reads

P(k,A) = pkδ(A − Ak). (7)

Making use of the results (4) and (6), P(k,A) can be written as

P(k,A) = χ(k)A−γ1�(A−γ2k) (k 	= 3) (8)

where �(z) = (4/3)A−γ2+γ1−1
6 δ(z − 6 · A−γ2

6 ). The exponents are given by γ1 = 1 − ln 3
ln α ,

and γ2 = − ln 2
ln α . Apart from the characteristic function χ(k), which selects the allowed edge

numbers, this equation reproduces the scaling relation (1) proposed in [9].
An equivalent, sometimes more convenient check of the scaling behaviour (1) is based on

the q-weighted average area of a k-sided cell:

〈Aq〉k :=
∫∞

0 AqP (k,A) dA∫∞
0 P(k,A) dA

. (9)

In the case that equation (1) holds, one obtains

〈Aq〉k ∼ 〈Aq〉6

(
k

6

)q/γ2

. (10)

Thus, a power law in k, where the exponent varies linearly in q, is a characteristic feature of a
distribution, for which the scaling relation (1) holds.

3.2. Multiply scaled cell areas

The cells’ sizes can be ascribed in a more general way choosing different scaling factors
({α1, α2, α3}, αi ∈ (0, 1/4)) for the areas of the cells inserted at the three vertices of one
triangle. Though the cells of one generation still have the same topology, now their areas
differ. For the cells of the mth generation (m = 1, 2, . . . ,M − 1) they are given by

Ai1,i2,...,im−1(m) = αi1αi2 . . . αim−1A(1) with i1, i2, . . . , im−1 = 1, 2, 3 (11)

where A(1) = (1 − α1 − α2 − α3)A�. The relative frequency of k-sided cells (k 	= 3) with
area A reads

P(k,A) = 1

N

M∑
m=1

δk,3·2M−m

3∑
i1,i2,...,im−1=1

δ(A − Ai1,i2,...,im−1(m)) (12)

where N is the total number of inserted cells. From equation (12), the q-weighted average
area (9) can be derived easily:

〈Aq〉k =
M∑

m=2

δk,3·2M−m3−m+1
3∑

i1,i2,...,im−1=1

[αi1αi2 . . . αim−1A(1)]
q

=
M∑

m=2

δk,3·2M−mAq(1)

[
α
q

1 + α
q

2 + α
q

3

3

]m−1

.
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Figure 3. Overall behaviour of the multiscaling exponent in equation (13).

Introducing the notation αq := (α
q

1 + α
q

2 + α
q

3 )/3, the final result reads

〈Aq〉k = 〈Aq〉6

(
k

6

)− ln αq/ ln 2

k = 6, 12, . . . . (13)

Again, we obtain an algebraic increase in k. In particular, for q = 1 the proposed generalization
of Lewis’s law for fractal tessellations (2) holds with γ2 = − ln 2/ ln α. For arbitrary values of
q, however, the exponents do not vary linearly in q, reflecting that the scaling relation (1) does
not hold for different weights α1, α2, α3 (see expression (10)). Linearity in q is approached
only asymptotically, with a slope determined by the largest scaling factor for q → ∞ and by the
smallest scaling factor for q → −∞. The overall behaviour of the exponent in equation (13)
is illustrated in figure 3 for two typical choices of the scaling factors. Its nonlinear variation
reflects the multiscaling behaviour of the system. In fact, with different values αi , this system
represents a three-value Cantor set. A multiscaling analysis following the lines introduced
in [10] can be performed.

4. Apollonian packing

A Sierpinski cellular structure with a more complex geometry results from the Laguerre
tessellation of the Apollonian packing of discs. The construction of the Apollonian packing
is defined as follows: the starting point is a curvilinear triangle formed by three mutually
touching discs of arbitrary radii. Inside this triangle a new circle touching the three discs is
inscribed. This will be later referred to as the seed of the packing. In the next step, new circles
are inscribed in the resulting three empty curvilinear triangles. This procedure is repeated
iteratively. In each iteration step, a new generation of circles is inscribed. Each circle of the
resulting structure is touched by three circles of the next generation, its daughters.
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Figure 4. Laguerre tessellations of the Apollonian packing for the first three iterations.

4.1. Laguerre tessellation

A space-filling cellular structure can be associated with this packing, assigning a polygonal cell
to each disc. The first attempt might be a Voronoi tessellation [11] generated by the centres of
the discs. The Voronoi cell of a disc is defined as the set of points which are closer to its centre
than to any other centre. The cell boundaries are composed of straight lines, perpendicular to
the connecting line between the centres of two neighbouring discs. Unfortunately, the Voronoi
cells may not cover their generating discs completely: whenever two neighbouring discs with
different radii touch, the larger disc is cut by its cell boundary. This disadvantage can be
circumvented by making use of a different distance definition. In particular, the Laguerre
construction [12] has been applied successfully to assemblies of hard discs with different
sizes [6]. In the Laguerre tessellation, the distance to a circle is defined as the length of
the tangent to the circle. The Laguerre cells are polygons containing their generating disc
completely. A sketch of the Laguerre tessellations generated by the Apollonian packing for a
few iteration steps is shown in figure 4. From the topological point of view, the insertion of
a new circle corresponds to the insertion of a triangle at a vertex, where three cell boundaries
meet. Thus, the topological structure is identical with the Sierpinski cellular structure.

The metric properties, however, differ from those obtained in the preceding section. Here
we are interested in the area distributions for different generations. For a finite number of
iterations, the cell areas would be hard to calculate. But they approach the areas of the
generating discs with increasing number of iterations M , since for M → ∞ the Apollonian
packing covers the whole area [13].

4.2. Basic metric properties

Our analytical and numerical considerations are based on the well known properties of the
Apollonian packing. In figure 5 three mutually touching discs, A, B and C, form a curvilinear
triangle with inscribed circle D. The curvatures sα (α = A,B,C,D) are related by the Soddy
formula [14, 15]:

2(s2
A + s2

B + s2
C + s2

D) = (sA + sB + sC + sD)
2. (14)
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Figure 5. Configuration of the circles A, B, C, D and d in equations (14) and (15).

This equation can be treated as quadratic in sC with fixed sA, sB and sD. Formally, two solutions
are found. One solution just gives sC, the other solution, sd, corresponds to the curvature of a
circle d which is inscribed in the triangle formed by the circles A, B and D (see figure 5). In
this way, a linear identity between the curvatures of the five circles involved can be derived:

sd + sC = 2(sA + sB + sD). (15)

Based on this linear relationship, a matrix formalism has been developed for the iterative
numerical calculation of the curvatures of the discs [13, 16, 17]. In this formalism, four-
vectors, each containing the curvatures of one disc and its circumscribing circles, are calculated
iteratively. Since in this representation the generations of the discs cannot be assigned easily,
a different matrix representation will be derived here.

In equation (15), d is one of the three daughters of D, i.e. a circle of the following
generation touching D. A four-vector sD = (sd1 , sd2 , sd3 , sD)

T is assigned to D. Its components
are the curvatures of D and of its three daughters d1, d2 and d3. Rewriting equation (15) for
all daughters of D, the curvatures sA, sB and sC can be expressed as linear combinations of sd1 ,
sd2 , sd3 and sD. Applying again identity (15) to the daughters of d1, d2 and d3, linear mappings
of sD on the vectors sdi can be derived:

sdi = MisD i = 1, 2, 3 (16)

where Mi = MP i−1, and

M = 1
9




20 5 −4 12
26 2 2 −33
20 −4 5 12
9 0 0 0


 P =




0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


 . (17)

The circle D may be considered as the seed of an Apollonian packing inside the triangle (A,
B, C). Thus, iterative application of equation (16) allows one to express the curvature of any
disc of an Apollonian packing as a linear combination of the curvatures of the discs of the first
two generations contained in sD. The mth generation in an Apollonian packing is the set of
discs which originate from its seed after m − 1 iterations.
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4.3. Moments

We now focus on the properties of the q-weighted sum of curvatures in one generation, or
moment, defined as

〈Sq〉m(sO) := 31−m
∑

mth gen.

(sd)
q . (18)

The summation runs over all discs d of themth generation originated from the seed O. The sum
over all generations,

∑
m 3m−1〈Sq〉m, the Melzak function, is known to diverge for M → ∞ if

q � −dF [13, 18]. Here, dF  1.306 is the fractal dimension of the Apollonian packing.
The average curvature of one generation (q = 1 in expression (18)) can be derived

analytically. From equations (16) and (17), a simple recursion relation is obtained:

3〈S〉l=3(sD) − 8〈S〉l=2(sD) + 〈S〉l=1(sD) = 0. (19)

This relation holds for any four-vector sD in an Apollonian packing. Thus, summation of
equation (19) over all discs of the mth generation yields 3〈S〉m+2 − 8〈S〉m+1 + 〈S〉m = 0. Here
the shorthand notation 〈S〉m := 〈S〉m(sO) omitting the seed vector sO has been introduced.
Thus, the average curvature is given by

〈S〉m = c+

(
4 +

√
13

3

)m
+ c−

(
4 − √

13

3

)m
.

The coefficients c± depend on the curvatures of the circles in the first two generations contained
in sO. For large m, the contribution of the larger growth coefficient β(q = 1) = (4 +

√
13)/3

dominates, and a simple exponential increase in m is obtained: 〈S〉m ∼ [β(1)]m. The growth
coefficient for q = 0 is simply β(q = 0) = 1. After lengthy but elementary calculations,
another leading coefficient for q = 2 can be obtained analytically: β(q = 2) = (10 +

√
97)/3.

From the general relationship 〈Sq〉m � 〈S〉qm for q � 0, q � 1, and the monotonic
increase of 〈Sq〉m in q, we conclude that 〈Sq〉m increases at least exponentially in m for q > 0.
In addition, one obtains 〈Sq〉m � ((4 +

√
13)/3)qm for negative q. We therefore postulate that

in general the exponential behaviour

〈Sq〉m ∼ [β(q)]m (20)

holds asymptotically for large m.
In order to evaluate the moments explicitly, numerical calculations based on the iteration

procedure in expression (16) have been performed. All numerical results presented in figures 6–
8 have been obtained for an initial curvature vector sO = (1, 1, 1, 1/(2

√
3 − 1)). In figure 6,

the moments of the first 14 generations are presented for five different positive values of q. The
numerical results are all well described by the simple exponential variation in (20): all lines
shown in figure 6 are straight lines. Whereas for q = 0, 1, 2 their slopes correspond to the
analytically determined values, for q = 1/2, 3/2 the slopes have been estimated numerically.
From this excellent quantitative agreement, we conclude that at least for non-negative values
of q, the moments converge very fast to their asymptotic exponential increase (20).

Making use of relation (3), the generations m can be uniquely mapped on edge numbers
k. The curvature s and area A of a circle are related by A = π/s2. Taking into account that
for M → ∞ the circle areas coincide with the cell areas, equation (20) can be written as

〈A−q/2〉k ∼ k
− ln β(q)

ln 2 . (21)

For arbitrary values of q, the leading growth coefficients β(q) have been estimated numerically
from the ratio of the moments in two successive generations, 〈Sq〉m/〈Sq〉m−1. In figure 7, the
estimated exponents in expression (21) are presented for q � −dF. The estimates have been
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Figure 6. Numerically evaluated moments of the first 14 generations for q = 0, 0.5, 1, 1.5, 2.
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their slope has been determined numerically.
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Figure 7. Estimated exponents in equation (21). Stars represent the exact analytical results for
q = 0, 1, 2.

performed for m � 14. As could be expected from the results presented in figure 6, the ratio
shows excellent convergence for positive exponents already for the first generations. With
decreasing q, the convergence is slower, but in the representation in figure 7, all errors are still
covered by the width of the line.

At first sight, the results presented in figure 7 suggest a linear variation of ln β(q) in q

corresponding to a simple scaling (1) of P(k,A). The analytical results for β(q = 0, 1, 2),
however, clearly disable such a simple scaling since β(2) 	= (β(1))2. This could be already
expected from the fact that the Apollonian packing is not self-similar.

In figure 7, the presentation of the numerically determined leading exponents is restricted
to the values q � −dF, for which the Melzak function introduced after equation (18) diverges.
For q < −dF, convergence of this function implies that the total moments 3m−1〈Sq〉m must
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decay in m, i.e. the leading exponent in (20) cannot be larger than 1/3:

β(q < −dF) � 1/3. (22)

On the other hand, a lower bound of 〈Sq〉m is given by the curvature σm of the largest disc in
the mth generation:

〈Sq〉m � 3−mσq
m. (23)

The curvatures σm can be determined analytically. Choosing equal curvatures sA of the
bounding discs of the packing, the largest discs of each generation always touch two of the
bounding discs (see figure 4). From expression (15), a simple recursion relation can be derived:
σm+2 − 2σm+1 + σm = 4sA. Its solution reads

σm = sA(1 + 2
√

3m + 2m2). (24)

Insertion of this result in relation (23) clearly shows that the asymptotic decay of 〈Sq<0〉m
cannot be faster than ∼3−mm2q . Thus, apart from algebraic corrections the leading exponent
has the lower bound

β(q) � 1/3. (25)

Comparison of relations (22) and (25) yields

β(q < −dF) = 1/3.

In particular, this result holds for q = −2, where the moments measure the average cell area
in one generation. Apart from logarithmic corrections, we thus obtain for the average area of
a k-sided cell:

〈A〉k ∼ k
ln 3
ln 2 . (26)

Remarkably, the exponent is identical with the negative exponent of pk in expression (4). Note
that the increase of 〈A〉k is much slower for the Apollonian packing than for the weighted cell
areas in the Sierpinski gasket. This can be assigned to the curvature of the bounding triangle
and the resulting slow decrease of areas of the largest cells in each generation.

Finally, it should be stressed that expression (26) is valid only in the asymptotic limit of
large m. Thus, for its numerical verification and for a quantitative check of the logarithmic
corrections, a large number of iterations would be needed. To illustrate this problem, in figure 8
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the total moments 3m−1〈Sq〉m, m � 14, are shown for three negative values of q. Their lower
bounds 3σq

m (24) are added. For q = −4, the total moments asymptotically follow their
algebraically decaying lower bounds. The quantitative behaviour for q = −3,−2, however,
appears to be less clear. A quantitative numerical check of their asymptotic behaviour would
require extending the calculations to much larger values of m. However, the exponential
increase of the number of discs in m clearly disfavours such an extension of the numerical
analysis.

5. Conclusions

To conclude, the algebraic increase (2) of the average area of a cell with its number of neighbours
appears to be a general property of fractal cellular structures. It suggests a generalization of
Lewis’s law to the algebraic variation (2) with arbitrary exponents. A similar generalization of
Aboav’s law describing the topological correlations between neighbouring cells had already
been proposed previously [8]. The simple scaling relation (1) proposed in [9] was found to hold
only in self-similar Sierpinski cellular structures. In all other cases, multiscaling properties
have been obtained. In this paper, we have focused on constructed structures in order to
derive rigorous results. Further numerical studies of the metric properties of simulated cellular
structures are intended in future. In particular, the random fragmentation model introduced
in [4] appears to be a good candidate for a random fractal tessellations.
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